Search results for "stationary state"
showing 10 items of 40 documents
Photokinetic examination of (Z,E,E)-4,4′-distyrylazobenzene
1995
Abstract 4,4′-Distyrylazobenzenes demonstrate a photokinetic equilibrium and a superimposed thermal backward reaction in which the absorption coefficient of one of the partners in the equilibrium is principally unknown. Using the dependence of the photostationary state on the irradiation intensity, the photochemical quantum yields ϕ 1 A and ϕ 2 B were determined, as well as the thermal rate constant k , as a function of the irradiation and observation wavelengths. Experimental difficulties and the wavelength dependence of ϕ 1 A and ϕ 2 B are discussed.
New Approach of Controlling Cardiac Alternans
2018
The alternans of the cardiac action potential duration is a pathological rhythm. It is considered to be relating to the onset of ventricular fibrillation and sudden cardiac death. It is well known that, the predictive control is among the control methods that use the chaos to stabilize the unstable fixed point. Firstly, we show that alternans (or period-2 orbit) can be suppressed temporally by the predictive control of the periodic state of the system. Secondly, we determine an estimation of the size of a restricted attraction's basin of the unstable equilibrium point representing the unstable regular rhythm stabilized by the control. This result allows the application of predictive control…
Multiphoton Absorption of Myoglobin Nitric-Oxide complex: Relaxation by D-NEMD of a Stationary State
2012
ABSTRACT: The photodissociation and geminate recombination of nitric oxide in myoglobin, under continuous illumination, is modeled computationally. The relaxation of the photon energy into the protein matrix is also considered in a single simulation scheme that mimics a complete experimental setup. The dynamic approach to non-equilibrium molecular dynamics is used, starting from a steady state, to compute its relaxation to equilibrium. Simulations are conducted for the native form of sperm whale myoglobin and for two other mutants, V68W and L29F, illustrating a fair diversity of spatial and temporal geminate recombination processes. Energy flow to the heme and immediate protein environment …
Microscopic black-hole pairs in highly excited states
2001
We consider the quantum mechanics of a system consisting of two identical, Planck-size Schwarzschild black holes revolving around their common center of mass. We find that even in a very highly-excited state such a system has very sharp, discrete energy eigenstates, and the system performs very rapid transitions from a one stationary state to another. For instance, when the system is in the 100th excited state, the life times of the energy eigenstates are of the order of $10^{-30}$ s, and the energies of gravitons released in transitions between nearby states are of the order of $10^{22}$ eV.
Stationary states of a two-state defect quadratically coupled to a few bosonic modes
1998
Abstract A fully quantistic microscopic two-phonon interaction model between an active centre and localized modes of an irradiated insulating material is introduced. Its exact diagonalization is accomplished with the help of a suitable unitary operator. Explicit expressions for the eigenvalues and eigenvectors are reported. The possible relevance of such a model in the context of the material science area is briefly pointed out.
Adiabatic eigenflows in a vertical porous channel
2014
AbstractThe existence of an infinite class of buoyant flows in a vertical porous channel with adiabatic and impermeable boundary walls, called adiabatic eigenflows, is discussed. A uniform heat source within the saturated medium is assumed, so that a stationary state is possible with a net vertical through-flow convecting away the excess heat. The simple isothermal flow with uniform velocity profile is a special adiabatic eigenflow if the power supplied by the heat source is zero. The linear stability analysis of the adiabatic eigenflows is carried out analytically. It is shown that these basic flows are unstable. The only exception, when the power supplied by the heat source is zero, is th…
The A + B → 0 reaction on a disordered lattice
1996
Abstract In this paper a stochastic model for the A + B → 0 reaction with creation of particles on a disordered surface is studied for d = 2 and d = 3 spatial dimensions. Densities and correlations of the particles are examined in detail. We find that the stationary state which exists for d = 3 in case of an ordered lattice vanishes in the case of a disordered lattice. A stationary state for d = 2 never exists.
A group-theory method to find stationary states in nonlinear discrete symmetry systems
2010
In the field of nonlinear optics, the self-consistency method has been applied to searching optical solitons in different media. In this paper, we generalize this method to other systems, adapting it to discrete symmetry systems by using group theory arguments. The result is a new technique that incorporates symmetry concepts into the iterative procedure of the self-consistency method, that helps the search of symmetric stationary solutions. An efficient implementation of this technique is also presented, which restricts the computational work to a reduced section of the entire domain and is able to find different types of solutions by specifying their symmetry properties. As a practical ap…
Application of thermodynamics to driven systems
2007
Application of thermodynamics to driven systems is discussed. As particular examples, simple traffic flow models are considered. On a microscopic level, traffic flow is described by Bando's optimal velocity model in terms of accelerating and decelerating forces. It allows to introduce kinetic, potential, as well as total energy, which is the internal energy of the car system in view of thermodynamics. The latter is not conserved, although it has certain value in any of two possible stationary states corresponding either to fixed point or to limit cycle in the space of headways and velocities. On a mesoscopic level of description, the size n of car cluster is considered as a stochastic varia…
The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study.
2021
AbstractSolvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation…